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One day ahead demand forecasting in the utility
industries: Two case studies
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This paper describes two case studies of short-term demand forecasting for the utilities, water and gas, linked to earlier
research in similar contexts. In both cases the forecast of demand has important consequences for the operations and
control of productive capacity. It is shown that in these two cases extrapolative methods based on the past data history
alone are outperformed by more complex multivariate approaches that include information on the effects of weather.
The paper concludes with a discussion of how an organization with an important short-term forecasting problem should
go about selecting an appropriate forecasting method.
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Introduction

Short term forecasting in most industries requires the fore-
caster to process many data series. The forecasts are used to
schedule operations and no single series is particularly
important to the organization. As a consequence extrapo-
lative forecasting methods have been widely adopted1. In
contrast, the utilities have a limited number of series
relevant to their efficient operations and consequently
substantial effort has been expended on forecasting, parti-
cularly in electricity2. This paper describes and integrates
two case studies, based on MSc projects undertaken for
British Gas North Western3 and Thames Water4 which
build on earlier research in the utilities concerned. The
objectives of the case studies were similar: to evaluate
various alternative methods of forecasting for possible
implementation. This research comes to the conclusion
that information on relevant explanatory variables, when
combined appropriately with the dynamics of the demand
process leads to improved levels of forecast accuracy
relative to extrapolative techniques. However the benefits
depend on both the utility concerned and the accuracy of
the weather forecast.

The paper first discusses the need for demand forecasting
in the utilities. The next section is concerned with fore-
casting accuracy and the choices facing an industry fore-
caster. The paper goes on to consider the data base
available in the two case studies. The various models and
their accuracy are then described. Finally, conclusions are
drawn concerning how these utilities should appraise their
forecasting procedures, and the relevance of these results
for forecasting research.

The need for demand forecasting

The privatization of the utility industries in recent years has
forced them to reappraise their profit margins. The prices
these new privatized companies are able to charge are
constrained by government regulatory bodies. To counter
the possible erosion of their profit margins, the companies,
instead have looked to minimize their costs. On a daily
basis, the companies can become more efficient by accu-
rately predicting demand with a consequent reduction in
storage and distribution costs.

In the water industry, privatization has forced the water
companies to make profits within the confines of their
statutory responsibility to provide a constant supply of
water to the consumers. The development of the London
Ring Main has enabled Thames Water to monitor the
supply of water from the London Water Control Centre.
The Centre is able to ensure a constant water pressure is
maintained by transferring water quickly through the Ring
Main. The Ring Main, though, is dependent on the reser-
voirs around London. Daily forecasts are used to ensure
that the amount of water held in the reservoirs and the
associated collection and distribution costs are kept to a
minimum.

Within British Gas North Western, Grid Control use day
ahead demand forecasts to calculate the most efficient
intake from the National Transmission System into the
regional system. Regional storage can thus be effectively
managed and supply and demand smoothly matched and
thus more accurate forecasts lead to reduced costs.

The electricity generation industry5 in England and
Wales was fundamentally restructured in 1990=91 from
being a single public utility, CEGB (Central Electricity
Generating Board). The result was two privatized compa-
nies, National Power and PowerGen, and a publicly-owned
company Nuclear Electric which retained all the Nuclear
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capacity. Further competition in the new marketplace also
comes from other suppliers, together with possible new
entrants. To operate the market, the National Grid
Company was set to take over the transmission of elec-
tricity and, hence, has the responsibility for secure supply
of electricity and the operation of a daily power pool. The
12 regional distribution and supply companies were also
privatized to allow them to compete independently from
the generating companies.

To minimize the risk arising from large price fluctuations
much of the buying of electricity was done on long term
contracts although shorter contracts (based on half-hourly
forecasts) are expected to become more commonplace as
the market stabilizes. Therefore, both the generator compa-
nies and the distribution=supply companies need to forecast
short-term demand.

The choice of forecasting methods in practice

The daily forecasts of demand in the utility industries
described above are important in the day-to-day operations
and control of each business. Consequently, in each of the
industries there is aprima faciecase for considering a wide
variety of potentially complex forecasting methods, if the
result is improved accuracy. There is no ‘best’ method of
forecasting, even when the problem is as tightly defined as
in these utilities6.

Various methods have been proposed for forecasting the
demand for gas; Berrisford7 describes a regression based
forecasting application. Lyness8 examined the effects of a
severe winter. Transfer function modelling, a multivariate
extension of the univariate Box-Jenkins ARIMA methodol-
ogy was used by Borgard et al.9, Taylor and Thomas10, and
Piggott11. The expertise of Grid Control engineers has been
incorporatted into an expert system which selected a fore-
casting model from a choice that included a Bayesian
model, regression and a combined model12. The expert
system could also make a subsequent adjustment to the
chosen model’s forecast. However, from the perspective of
British Gas NW these various models had not been thor-
oughly evaluated as to their forecasting performance and
therefore this earlier research was seen as offering only
limited guidance as to the appropriate methodology to
adopt.

Short-term forecasting of water demand has gathered
little attention apart from Sterling and Bargiela13. The bulk
of the published work has been carried out analyzing
electricity forecasts. (See Bunn and Farmer14 for a
summary). Engle et al.15,16 have shown that short-term
fluctuations in demand have two primary causes: season-
ality (within the week, or month) and changes in the
weather. Influences such as price and income are likely to
have a longer term effect. These studies have conclusively
shown that extrapolative methods (which include season-

ality but not explicit weather variables) are outperformed
by suitably specified explanatory models.

Within British Gas a wide range of models had been tried
and claims made for their performance characteristics.
Within Thames Water the ability to control the flow of
water was new and therefore the need for short-term
forecasting was new. Both project briefs therefore required
the evaluation of a range of methods. Methods chosen for
inclusion were

� Exponential Smoothing (on the grounds of its strong
performance in so-called forecasting competitions)17.

� Box-Jenkins ARIMA methods.
� Transfer function modelling.

An approach that is sometimes adopted when forecasting
electricity demand is to make an adjustment to demand
based on the weather. There is no unique method for
accomplishing this and performance would typically be
worse than the more general regression methods discussed
here.

Performance measures

It is essential when evaluating a forecasting method to
consider, not just standard statistical measures of the
method’s (within-sample) fit, but also its stimulated perfor-
mance when forecasting. Fildes and Howell18 demonstrated
that there is little correlation between models that best fit
the data and the models that will produce the best results
when actually forecasting, arguing that model performance
should be compared by using ex ante testing. When
explanatory variables are included in the model such ex
antecomparisons are implicitly conditional on the accuracy
of forecasts of the explanatory variables. Typically, fore-
cast accuracy deteriorates sharply when these forecasts are
used19,20. As a consequence, an out-of-sample ex post
comparison should also be carried out. This establishes
whether forecast inaccuracy arises from model mis-speci-
fication (and randomness) or from the failure to forecast the
explanatory variables correctly.

Within the above framework it is necessary to decide on
appropriate measures with which to compare alternative
methods. Ideally, where forecasts are used directly as a key
input into a decision, the cost consequences of the errors
should be measured although these are seldom available.
Instead various alternative measures of forecast accuracy
are used. Because there are many different criteria which
may be used to evaluate the measures21,22 such as its ease
of interpretation in the problem situation, its reliability etc
no ideal single measure is available. Different forecasters
and the forecast users will have their own preferences based
on these alternative criteria. The overall aim when choosing
an error measure in a practical application is, therefore, to
recognize how the costs of forecast inaccuracy are reflected
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in the distribution of forecast errors and make the choice
accordingly.

Unsurprisingly the two utilities had different preferences.
In so far as both problems under study are only concerned
with a single data series, the choice of measures for
comparing models is not so problematic as in the more
typical case where there are many series to evaluate. The
measures chosen in Thames Water were

� Mean Absolute Deviation (MAD): to evaluate the aver-
age error regardless of sign.

� Root Mean Square Error (RMSE): to place more empha-
sis on large errors.
(With only one data series, the error measures can be
scale dependent.)

In addition, because these measures do not fully reflect the
error distribution according to the standard laid down in
Armstrong and Collopy21, we also discuss the overall shape
of the error distribution. In British Gas, it was regarded as
important to distinguish between those errors arising from
the method under analysis and those due to poor forecasts
of the explanatory variables. Two different error measures
were already used in British Gas NW to measure the daily
performance of their model. Total % Error shows how each
daily forecast actually performed (using forecast and esti-
mated data), and Unexplained % Error shows how the
model would have performed had actual weather data
been known when the forecast was made. These errors
are defined as follows for each day forecast:

Total % Error �

Actual Demand ÿ Forecast Demand
�using forecast explanatory variables� =Actual Demand

Unexplained % Error �

Actual Demand ÿ Forecast Demand
�using actual explanatory variables�=Actual Demand

and the mean absolute percentage error (MAPE) calculated
in both cases. In addition, extreme errors may be regarded
as particularly important for utility forecasting because of
legally enforceable service requirements. Therefore the
percentage of large absolute errors was also calculated for
British Gas North Western. As in the case of Thames Water
we comment on the shape of the error distribution.

Preliminary data analysis

Thames Water

Short-term fluctuations in water consumption were thought
to be primarily caused by the weather, and any restrictions
on demand such as hose pipe bans. Usage itself was
calculated from the main sources of supply. Reservoirs

act as a buffer between supply and demand, so the follow-
ing equation was defined to evaluate daily demand.

Daily demand � Total daily supply ÿ Reservoir usage

where

Reservoir usage � Today’s reservoir volume at 8 am

ÿ Tomorrow’s reservoir volume at 8 am

Possible causes of inaccuracies in the data were

� The supply and reservoir readings were taken at different
times during the day. Staff did not consider this to be a
major cause of inaccuracy.

� The reservoir information covered 74% (by volume) of
the reservoirs in London. It was not possible to predict
the remaining 26% of reservoirs due to the unpredictable
nature of their operation. Therefore all reservoir usage
figures were under-estimates.

� In most circumstances, leaks in the pipe network can
reasonably be assumed to be constant and therefore not
significant. However, large leakages caused by thaws
were significant.

� Supply constraints such as hose pipe bans were not
thought to be a problem during the period studied.

� Some limited interpolation was required to estimate
missing reservoir data.

Initially data were available for the period spanning 1
November 1990 to 5 April 1992 (522 data points), which
was later extended to the 30 June 1992. A graph of the
demand data is given in Figure 1. An initial interpretation
of the graph provided the following observations

� A decrease in demand can be seen to occur over the
Christmas periods.

� Good weather and the thaw (February 1991) are possible
causes for observed increases in demand.

� No significant long term trend can be identified from the
graph.

A simple analysis of daily seasonality using a multiplica-
tive decomposition approach showed a clear drop in
demand on Friday and Saturday. Possible reasons for the
pattern are a shutdown of industry on Friday for the
weekend and consumer behaviour at weekends that may
differ from usual weekday activities.

British Gas NW

A forecast sendout, the amount of gas distributed from the
National Transmission System (NTS) and Regional storage
holders, over the twenty-four hour period starting at
0600 hrs on dayt is needed to manage the National
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Transmission System. Daily sendout, Dt, is calculated
using

Dt � Intake from NTS �It� ÿ Start Storage Next Day �St�1�

� Start Storage Current Day �St�

Sendout does not correspond to the amount of gas sold to
end-users in the NW, due to such factors as stolen gas,
leaks and calorific value assumptions. While sendout is not
a completely accurate measure of the amount of gas taken
by end-users, there are no identifiable consistent measure-
ment errors. Daily sendout for winter 1990=91 is shown in

Figure 2. The day of week and the occurrence of national
holidays also affect the level of demand significantly. At
weekends and holidays, sendout is less than it would be on
weekdays as industrial gas demand decreases, with an analy-
sis of the daily seasonality confirming the ‘weekend effect’.

Weather is known to be the major factor affecting
demand. Problems were identified with the temperature
and wind speed data during the analysis

� In the North West, temperature and wind speed are not
constant over the whole Region; consequently, these data

Figure 2 Daily Gas Sendout in the North West. Period: 1 October 1990–30 April 1991.

Figure 1 Daily Water Demand in London. Period: 1 November 1990–30 June 1992.
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provide a less useful summary of whether effects
throughout the Region when there is a large difference
in temperature between different areas.

� There is significant bias in the forecasts of temperature
and wind speed. Forecasts are likely to be more pessi-
mistic (namely forecast temperatures colder and wind
speeds higher) than actual.

At the time when the forecast is made, not only must the
next day’s climate be forecast, but only a part of the current
day’s demand is known. Predictions made at 1500 h for the
current day are known as ‘estimates’, and predictions for
the next day are known as ‘forecasts’.

Modelling to improve forecast accuracy

Thames Water

The project brief given by Thames Water requested an
exhaustive search of forecasting techniques concentrating
on simpler approaches. A naive random walk model,
tomorrow’s demand forecast� today’s demand, was
defined as a basis for comparison.

The techniques of exponential smoothing, univariate
Box-Jenkins modelling and dynamic regression were tried
in order of increasing complexity. Transfer function model-
ling was not considered because Thames Water perceived
the approach as too complex.

After evaluating the naive model, a range of exponential
smoothing models including seasonality and trend were
tried (as defined by Gardner24). The seasonality was iden-
tified as daily.

Performance of three models proved to be similar: (i)
linear trend and multiplicative seasonality; (ii) no trend and
multiplicative seasonality and (iii) no trend and additive
seasonality. The first model including trend was unneces-
sarily complex. The differences between additive and
multiplicative seasonality are typically slight when there
is no trend in the data.

The choice between the remaining models was based on
intuition about the nature of water demand. A change of
demand due to a bank holiday, for instance, was considered
to have an effect in addition to the regular day-of- the-week
seasonality. The model based on no trend and additive
seasonality was considered an adequate representation of
the data.

The development of a univariate Box-Jenkins model
requires the transformation of data if stationarity does
not exist in both the mean and variance. No such trans-
formation was required for the Thames Water data.
The best model was found to have the form of an
ARIMA(2, 0, 0)*(1, 0, 0)7: a model with two non-seasonal
autoregressive parameters and one seasonal autoregressive
parameter. (A constant term was also included in the
model). Using this as a basis, a regression model was

developed incorporating various weather variables and
the lags derived from the ARIMA formulation.

Weather plays a significant role in determining water
demand over the summer period. It affects the choice, for
instance, of when people go on holiday. The affect of
weather in winter is less significant. To identify this period,
during the summer, a dummy variable was defined to
represent the gardening season (G). The gardening season
was defined to lie between 1 April and 14 September.

Weather data were available for minimum temperature
(MnT), maximum temperature (MxT), wind (W), rainfall
from 9 : 00 to 21 : 00 (R09), rainfall from 21 : 00 to 9 : 00
(R21), and sunshine (Sn). A dummy variable was used to
identify the gardening season. A thaw variable was defined
to represent the cold spell in February 1991. The variable
represents the accumulated degrees of frost

cumfzt � min�cumfztÿ1 � �MnTt � MxTt�=2; 0�

If the average temperature, (MnTt�MxTt)2, is below
freezing cumfzt decreases. If average temperature is
above zero, but the sum of cumfztÿ1 and average tempera-
ture is less than zero, then cumfzt equals the sum of
cumfztÿ1 and average temperature. If the sum of the
average temperature and cumfztÿ1 is greater than zero
than cumfzt equals zero.

The bank holidays were split up into different variables:
Christmas (Xmas); New Year (NY); Easter (E); Summer
bank holidays (BH).

After careful analysis of seasonality and autocorrelation,
the final regression model was determined as shown in
Table 1. The correction for first order autocorrelation was
estimated by the Cochran-Orcutt method (using Forecast
Master Plus25). Autocorrelation still existed for lag 14.

The inclusion of lagged demand implies that the other
variables explain changes in the level of demand from the
previous periods. The larger coefficient for the change in
sunshine hours out of gardening season, rather than in the
season, shows that the appearance of the sun has more
effect outside the gardening season. Those working within
the industry suggested a possible explanation is that the
appearance of the sun in Summer is less of a surprise and
therefore leads to a more limited change of behaviour. The
‘accumulated degrees of frost’ variable is such that the
higher the value, the lower the demand, therefore a nega-
tive coefficient implies a higher demand. (The sum of the
various lagged coefficients are negative with the alternating
sign explained by the correlation inbuilt into the variable’s
definition.)

Various diagnostic tests of the model were carried out for
evidence of mis- specification and failure of the regression
assumptions.

To check how stable the coefficients were, the simple
Box-Jenkins demand model was evaluated using the Chow
Test (also known as the analysis of covariance test)26. The
test works by measuring the equality of regression coeffi-
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cients over two sample periods conditional on the equality
of the error variances in the two samples. The test result
was significant, indicating instability in the coefficients.

To check whether variable parameters were needed, the
coefficients were examined using rolling regression. (A
rolling regression is where the parameters are estimated
on a moving data window rather than on the full data set).
The rolling regression (usingMicrofit26) was carried out
over the gardening season, 1 April 1991 to 14 September
1991. The size of the window for the regression was 100
data points. The size was chosen for three reasons

� To allow holiday variables to be included in the rolling
regression.

� To ensure the coefficients were not affected significantly
by individual data points.

� To maximize the importance of the latest data.

An example of how the coefficients vary is shown in
Figure 3. The overnight rainfall coefficient, shown in
Figure 3, increases towards zero as the end of the gardening
season approaches. It would be reasonable to sumise that
the coefficient at the beginning of the gardening season

started near zero, approached a peak value of77 and then
went back to zero at the end of the season. The importance
of the overnight rain relates to the use of hosepipes.

The coefficients of Monday, Friday and Sunday were
also found to vary. This was thought to represent the
changes in leisure time behaviour as the season progresses.

To allow the technique to predict water demand for a
whole year, the demand data were first adjusted to remove
the effects of the thaw, Christmas and bank holidays. The
window size was increased to 210 data points so that all the
variables were defined during the rolling regression. The
results (shown in Table 2) indicate an improvement on
earlier models, but at the cost of increased complexity.
Note that the models used depend on the actual values of
the explanatory variables, the history of local weather
forecasts being unavailable except at prohibitive cost.

The performance of the models considered so far is
shown in Table 2. Exponential smoothing offers a slightly
more appropriate characterization of the data than the
univariate Box-Jenkins model identified. The regression
models were found to be the best over the gardening
season. Outside the gardening season, exponential smooth-

Table 1 The explanatory variables used to predict water demand (Dt)

Variable Description Coefficient T-Ratio
value

Dtÿ1 Demand (the day before) 0.644 6.58
Dtÿ2 Demand (two days before) 0.154 1.73
Dtÿ7 Demand (seven days before) 0.114 2.29
Dtÿ8 Demand (eight days before) 70.092 71.92
Mt Monday 17.0 2.13
Ft Friday 719.7 72.66
Sut Sunday 27.9 3.71
CumFztÿ1 Accumulated degrees of frost (the day before) 725.2 74.25
CumFztÿ2 Accumulated degrees of frost (two days before) 37.1 2.80
CumFztÿ3 Accumulated degrees of frost (three days before) 750.8 73.29
CumFztÿ4 Accumulated degrees of frost (four days before) 55.5 4.21
CumFztÿ5 Accumulated degrees of frost (five days before) 726.0 74.24
Xmas Christmas 795.6 72.20
Xmas(71) Christmas Eve 799.0 72.14
Xmas(72) 23 December 7167 73.93
BH(� 1) The day after a bank holiday 57.3 2.28
BH(71) The day before a bank holiday 763.2 72.55
�G�

t Sn0t� Change in the number of sunshine hours in the
gardening season

2.49 2.74

�G�

t MxTt� Change in maximum temperature in the garden-
ing season

4.32 2.84

�G�

t R21t� Last night’s rainfall in the gardening season 73.18 72.41
�Gÿ1�

t Sn0t� Change in the number of sunshine hours outside
gardening season

3.30 3.18

�Gÿ1�
t MnT0

t� Change in minimum temperature outside the
gardening season

3.34 2.13

utÿ1 Autocorrelation term 70.248 72.25
c Constant 393 5.40

Estimation Period: 1=11=90–31=9=91. n� 325 effective observations.
Average demand� 2210; standard error� 41.6, R2

� 79.3.
N.B. X 0

t represents the first difference, Xt ÿ Xtÿ1.
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ing performed almost as well. These results were also
confirmed by further analysis of the out-of-sample error
distributions; with distributions which are skewed (as these)
examination of a limited range of summary statistics can
lead to mis- understanding the results27. For example,
comparing the performance of Box-Jenkins with Regres-
sion for Winter 199192, the difference in MAD (MAPE and
RMSE) is solely due to a few observations. (In fact, the
Median Absolute Deviation is lower for Box-Jenkins than
Regression.) Overall, these results conform to expectations
derived from the earlier research cited that weather does
have a causal effect on water demand and its inclusion
leads to improved forecasting performance.

British Gas NW project

The project brief was

(i) to improve the forecasting methodology then employed
by evaluating various possible changes to the existing
explanatory model,

(ii) to examine the use of Box-Jenkins methodology,

in the light of the error statistics described in the earlier
section.

Prior to the project, British Gas NW had developed a
forecasting approach of using seasonal models:

� A winter model operational between the months of
October and April inclusive.

� A summer model between May and September inclusive.

British Gas NW regarded it as vital that the winter model
was as accurate as possible, since it is on cold days that
demand is highest and accurate forecasting is most needed.
This project therefore concentrated on developing the
winter model.

Little evidence was available from earlier analyses that
any out-of-sample comparisons with alternatives had been
carried out when the model in operation in British Gas NW
was adopted. Because of the emphasis on winter demand,
data from the winters 1985–1990 were used to establish the
parameter estimates, and the data from winter 199091 were

Figure 3 The changing effect of overnight rainfall on Water Demand(Rain21) in a Rolling Regression. Period: 1 April 1991–14
September 1991; Window size� 100.

Table 2 Comparison of the water demand models: one day ahead forecast error summary statistics

Out-of-Sample Period

Model 1=10=91–5=4=92: n� 187 6=4=92–30=6=92: n� 85

MAD RMSE MAD RMSE

Random walk 51 64 56 74
Exponential smoothing 41 53 50 65
Univariate Box-Jenkins 42 56 53 65
Regression 41 51 46 60
Rolling regression 39 51 44 57
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used to test the forecasting performance of the potential
models.

The current forecasting method

The starting point for the project was the multiplicative
model (Mult Dual) developed by British Gas NW to
forecast next day demand (sendout) in the winter of
1990=91.

Fcst: Demandt�1 � �Est: Demandt ÿ Adjt�

� �1 � TmpCht�1
�

bTemp

� WndCht�1
�

bWind� � Adjt�1

where the variables are defined as follows

� Fcst: Demandt�1 is the forecast of demand for day t� 1,
� Est. Demandt is the estimated demand for day t,
� TempCht�1 which is the change in Effective Tempera-

ture (Forecast of EffTempt�17Estimate of EffTempt),
� WindCht�1 which is the change in average wind speed

(Forecast of Average Wind speed for day
t� 17Estimate of Average Wind speed for dayt),
and the parameters are

� bTemp is the temperature sensitivity,
� bWind is the wind speed sensitivity,
� Adjt is the adjustment factor for the day of the week, t.

This takes into account industry shutdown on Friday,
Saturday and Sunday.

Effective temperature is measured as an exponentially
weighted average of past temperatures: an attempt to
measure the phased adjustment of householders to changes
in daily temperature.

EffTempt � aTempt � a�1 ÿ a�Temptÿ1

� a�1 ÿ a�
2Temptÿ2 � . . .

where Tempt�Average temperature for day t. Experimen-
tation identified the best value for a as 0.5.

Another feature of the model was dual temperature
sensitivity, where temperature sensitivity of end-users
depends on the forecast average temperature

bTemp � bTemp1 if Tempt > � Split Temperature

� bTemp2 if Tempt < � Split Temperature

The split was investigated as the sensitivity of end-users
was believed to vary with temperature.

A simplified version of this multiplicative model (Mult)
was tried without the dual temperature sensitivity. An
additive form of the regression model (Add), without dual
temperature sensitivity, was considered next. The model
looked at causes of change in demand:

Change in Demandt�1 � TmpCht�1
�

bTemp

� WndCht�1
�

bWind � Adjt�1

ÿ Adjt

The model (Add Dual) was repeated including the dual
temperature sensitivity. Dual temperature sensitivity made
little improvement to the performance of the additive
model, and many of the error measures deteriorated.

To counteract the autocorrelation noticeable in the resi-
duals of both the additive and multiplicative models a first
order autocorrelation term was added. The two models
(Mult AC, Add AC) were repeated with autocorrelation
but without the dual temperature sensitivity. The introduc-
tion of autocorrelation improved most of the error measures
for the multiplicative model. For the additive model, the
use of autocorrelation produced the lowest mean absolute
total error of all the models considered. For both models,
the introduction of autocorrelation slightly improved the
mean absolute % total error, but the number of 5% and 10%
total errors (based on the forecast weather) increased. In
general however the changes were slight.

Alternative models

Base line comparisons were made with exponential
smoothing with multiplicative seasonality and no trend.
Also ARIMA style models were built with deterministic
(dummy) seasonals and two autoregressive parameters.
Attention was given to the need to use estimated sendout
for the previous period as well as the unusual observations
around Christmas. The transfer function class of models
(Transfer) was next considered; this links the explanatory
variables, temperature and wind speed, and their lagged
values to the dependent variable (and its lags). The transfer
model selected was similar to those derived by Piggott and
Borgard et al10,11 but using wind speed instead of solar
radiation as an explanatory variable.

The additional complexity proved to be of no benefit,
since the conventional explanatory models outperformed
the transfer function methodology. Further, it remained an
important issue that the engineers who made the daily
forecast understood how the model worked9. The additive
autocorrelation was understood at British Gas NW, but this
comprehensibility would have been lost with the imple-
mentation of the transfer model.

The performance of the models is shown in Table 3. The
multiplicative models produced results slightly inferior to
the corresponding additive models given above. It was
decided that the additive autocorrelation model (Add AC)
was to be recommended for winter 1991=92. The results of
the model show a large mean total error and a small mean
unexplained error. This is explained by bias in the tempera-
ture and wind speed forecasts of winter 1990=91. Bias
adjustments were therefore considered for the additive
autocorrelation model.

Two methods of calculating the adjustment factors were
tried. The first calculated the recent bias in forecasting the
explanatory variables but led to an over-adjustment. The
second method involved identifying the adjustments by a
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process of trial and error, using winter 1989=90 as the test
period. The best adjustment factors were then applied to the
data of winter 1990=91. The results of the additive auto-
correlation model with adjustments (Bias Adf) are shown in
Table 4 and this was the model recommended for adoption.
The parameters for the proposed model using the data of
winters 1986=87 to 1990=91, scaled to disguise their
magnitude, are shown in Table 4.

Conclusions

In the forecasting literature there has been some contro-
versy about whether the inclusion of explanatory variables
typically improves forecasting accuracy. The British Gas
North Western study adds further support to the view that
where forecasts of the explanatory variables are reasonably
accurate, gains can be made. Short-term weather forecasts
fulfil that requirement. The Thames study is more tentative
in that forecasts of the weather variables were not available,
therefore the analysis only pointed towards the same
conclusion. Engleet al15 study of electricity adds further
evidence. We therefore conclude that those utilities still
relying on extrapolative modelling are likely to be incur-
ring unnecessarily high levels of forecast inaccuracy and
correspondingly higher costs.

Whilst the water study again supports the conclusions of
Makridakis et al.28 that exponential smoothing typically
outperforms the Box-Jenkins methodology, for gas the
relationship is in the opposite direction. Arguments also
persist concerning the relative virtues of the transfer func-
tion approach compared to dynamic regression. The former
is now recognized to be a special case of the latter (see for
example, Fildes19) with particular problems concerning
stationarity of variables included in the model. However,
this does not necessarily imply poorer performance in
practice—the parameter constraint implicit in the transfer
function methodology may prove useful. Here the regres-
sion approach was better.

The question as to whether variable parameter modelling
leads to improved performance remains moot with only
limited evidence available29. In the Thames study small
gains were achieved using the simplest form of this class of
model. Both of the studies reported on here split the
available data base, for example using the winter period
alone. Parameter fluctuations were established throughout
the year (and perhaps from year to year). Although the use
of time varying parameter models gained only limited
support, using different models for distinct sub-sets of the
data (which recognizes the shifts in parameters over the
seasons) should lead to improved accuracy, for example
summer and winter models.

In summary, when selecting a forecasting method for an
important application, the methodological issues that need
careful attention are: (1) the choice and definition of the
explanatory variables and the accuracy with which they are
forecast, (2) data correction, to deal with such features as
missing observations and holidays, (3) comparative testing
of the various alternative forecasting methods using out-of-
sample data, (4) appropriate choice of forecast error
measures and (5) diagnostic checks, in particular of a
model’s stability across the range of its potential applica-
tions.

With OR projects, implementation of an apparently
improved procedure can never be taken for granted. For

Table 4 Forecasting gas demand: value of parameters in the
additive model with autocorrelation (Add AC)

Variable Coefficient
value

t-ratio Summary statistics

Temperature 775.6 753.1
Wind 8.83 21.2 Average� 870
Friday (Adj) 744.3 711.7 R2

� 83%
Saturday (Adj) 7158 739.0 Std. Error� 34.5
Sunday (Adj) 7137 736.3 n� 968
Autocorrelation Term 70.214 na

Estimation Period: October 1986–April 1991: Bank holidays
omitted.

Table 3 Comparison of gas demand models: one day ahead forecast error summary statistics (effective sample size� 196)

Out-of-Sample period winter October 1990–April 1991

Total error (%): Unexplained error (%)
Forecast weather variables Actual weather variables

Model Mean error MAP-
E

APE> 5% APE -
> 10%

Mean error MAP-
E

APE> 5% APE -
> 10%

Random walk 70.470 7.953 54.1% 30.6% — — — —
Exponential smoothing 70.427 7.048 52.0% 25.5% — — — —
ARIMA 0.373 6.652 59.7% 18.9% — — — —
Additive 71.932 5.393 41.0% 12.2% 70.104 3.045 19.4% 2.6%
Add Dual 71.915 5.428 42.3% 12.2% 70.100 3.002 17.3% 2.6%
Add AC 72.406 5.358 42.3% 13.3% 70.096 2.906 16.3% 2.6%
Transfera

70.728 5.518 42.3% 13.6% 0.132 3.263 19.6% 3.5%
Bias Adj 70.245 5.013 35.7% 11.7% 70.096 2.906 16.3% 2.6%
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British Gas North Western the improvements deriving from
the ‘best’ model described above were sufficient to lead the
user engineers to discard their previous approach in favour
of the additive autocorrelation model with adjusted weather
forecasts. The search for further improvements continues
with current interest focusing around the use of neural
networks. For Thames Water, in what was a more explora-
tory study, the accuracy of the forecasts derivable from the
simpler models were not thought to offer sufficient
improvement in accuracy to merit replacing the judgmental
forecasts made by the controllers. However further research
has continued into the determinants of water demand, an
increasingly important topic with the adoption of water
metering and the effects of the drought in Summer 1995.

In conclusion, although there are good reasons to believe
the best forecasting model will be a complex, non-linear or
time-varying one, it appears that careful treatment of
weather, weekends, holidays and other factors are the key
to successful forecasting. If simplicity is all important, the
users should stick to exponential smoothing or rely on their
experience; the loss in accuracy is less than 10% for water
and about 25% for gas. If such gains are worth having, the
key to achieving the improvements is careful model build-
ing and out-of-sample model comparisons.
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